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SUMMARY

This research memorandum presents & unified treatment of the assump-
tions and theorms concerning the distribution of rediel error, and demon-
strates 1ts statistical application in war gaming. The density function
and cumulative distribution function of the redial error are derived and
grapned for one, two, and three dimensions. Por each of these cases,
formules are given for the expectation, standard deviation, and median of
the radial error. Tebles of pertinent conversion are provided. Results
are given for the distribution of detonsetion points in three dimensions

that are useful in wvar games employing atomic rockets or torpedoes.
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I. INTRODUCTION

When studying a phycical system, it is frequentiy necessary to devise
a matihenatical model involving the distribution of the length of a rando:
vector vhose components are independently, normally distributed about the
origin witih variance 0.2. A model of this type is often userul in the
physical sclences and aagc been employed Ly opverations anslyste in the
theory of bambing error. Tris research memorandum defines such a model,
investigatep its theoretical properties, and applies it to the statistical
distribution of wespon readial error in war gaming.

In var pgaming when the desired ground zero for an atouic weapon is
given, the actual ground zero can be statistically determined bty random
sampling. The statisticel technique for doing this is elementary, but no one
has bothered to spell 1t out in a step-by-step manner for tihe use of per-
sons unfamiliar with statistics. Moreover, the three-dimensional case has
not been fully treated previously despite the fact that atamic rockets and
torpedoes are critical weapons in many detailed war games. Consequently,
it ie believed that 'a unified treatment of the assumptions and theorems
conceming the distribution of weapon radial error is needed for ready
reference. Pormulas, derivations, grspns, and constants for the one, tvo,
and three-dimensional cases are collected here to aid the operations
analyst, and an example is given to illustrate the applicatiocan of the
statistical model.

It is assumed that the n rectangular ocoordinates of the detonation
point are mutuslly independent and that each has a Caussian distribution
with expectation zero aul variance . Thus the model is based on the

n-dimensional sperical G .wussian distribution since the coordinates have a
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commoan variance, In an ellipsoidal model where the standard deviations oy

are unequal ve have the approximation

1/n
cé(oi...o;) .

This 1s a good approximation when the standard deviations are nearly
equal, and it is still sdequate vhen the largest standard deviation is
tvice the smallest, For extreme ellipsoids, however, the sbove approxi-
mation should not be used,

The statistical method of detemining the detonation point requires
Just three inputs: the aiming point, the direction of approach to the
te.rget: anl the means of delivery of the weapon, From the first two we
construct a rectangular coordinate system at the aiming point with one
axis oriented along the approach direction. Prom a knowledge of the means
of weapon delivery we choose a median radial srror. The median radial
error in the one, two, and three-dimensional cases is, respectively, the
linear probable srror, the circular probable error, and the spherical
prodbable error. !sinz a “ooversion factor derived here, the median radial
error is converted into a standard deviation, Pinally, each of the n
coordinates is selected from s table of random Saussian numbers corres-
pondirg to this standard deviation,

ffencrally the terminology and notation used here conform to that of
current books on probability and statistica, Por example, following the
nodern trend, random var!sbles wre capitalized to distinguisn them from

ordinary variedles,

-

Mathematically, t}.s input is required only “n the ellipsoidal
model; howvever, because >f tactical considerations {t is often useful
in the spherical model,
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TI. DISTRIBUTION OF THE RADIAL ERRCR

To find the distridution of the redial error in ome, two, and three
dimensions we vill derive the general funetion and then set n equal to 1,
2, and 3. Let . Y(X; u,0°) denote that the random varisble X has s Geussian-

distridution vith expdotation u and variance 02, i.,e,, the dsneity function

for X 1is
_1 (xep)Pf2d?
a2
Lat
1 -12/2
g(x) @« —— ¢ - <X <® (1)

2
be the dsnsity function of a standard Caussian rendom varisble X, Also lst .

2(X; n) denote that the random variable X has & Chi-square distribution

vith n degrees of freedom, {.s., the density funstion for X is

x (x) = —RT/;—)zm x?/2-1 o -x/2 x 2o0.
Assuming
5(x1; 0, 02) for i ml, ..., n
ws see by division that
' H(x,/e; 0, 1) for { =1, ..., n,

But the square of a standard Gaussian rendom variable has a Chi-square

distridbution with one degree of freedoms, {.s.,

'X.a(xf/ae; 1) for { » 1, ..., 3,
Moreover, the sum of n independsnt Chi-square random variables vith one

dagree of freedom has a Chi-square distridbution with n degrees of freedom, i.e,,
n

%2('%2" Z Xf; n).

1al
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Since the n-dimensional radial error rsandam variable is defined by
n
2
- Z:xi'
1=l
ve gee that

’XQ(Ri/cz; n).

So the dsnsity functiom for Ri/a2 ‘s

2-1
k (r2/o°) = —>t / <; >n/ e’ 2o,
n [(o/2)2P/2 *

By transformation of variable the density functiom for R_ is

21 n/2-3, ° 2, 2
2r -r/20
tn(r) ll\dr 2\k (l‘ /0 ) L W( ) e
v 1 21 e-rz/zoe'
F(n/2)2nf2.1 @
Therefore the density function of the random varisdble Rn is
N1 -r2/202
£.(r) o — r>0 (2)
vhere °
- 1 . (3)

In particular we have far n e 1, 2, 3%
2,.2 2
r ,rf2d° _ r o T /20

- 1 r2 o T /20 gﬁ e T /20
C(3/2)22 & ‘C B

8inse [ (1/2) = 172 and["(t + 1) @ tI(t) tor t>o0.
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Ths cumulative distribution of the randam variable Rn is
r r
n-1l 2,,2
- 2
Pn(r) - P()‘(n $r)m= tn(u)du - . “an eV f20 du,
0 0
2n 2
Letting t = u“ /20" we get
' r2/20° r2/24°
' 2-1 -t
n/2 (n-2)/2 -t 2 £1/2-1 -t g
- t -
Pn(r) 2 cn ] dt [_-:-(57-5’—
0 0
(n/2)
[tn/
-2
["(n/2)
vhere I:(u) is the incamplete Camma functiom.
Therefore
P (r) - 21(r%/26%, n/2) r> o0 (»)

vhere I{t,u) 1s the incomplete Gaamms function ratio.

In particular we have for n = 1, 2, 3

?,(r) = 21(r%/2¢%, 1/2)
r,(r) = 21(r%/24%, 1)

ry(r) = 21(r%/26%, 3/2).

However, we wvill derive other expressions for the cunulative dis-
tridution functions and density functions which will permit their graphs

to be plotted more eusily from available tadles.



When b = 1 W have

i 7
IT=ib

T =29-x
r

[
Pl(r) -/ fl(u) du =

4]

r
[ 51 a2zl
[ {75 .
X0
0
latting t @ u/c ve get
r/o

r/a

2 2
r(r).—J o't/adtnaxgj 1 t'/2¢1t,
I

0
Therefore the cumulative distridut‘om function of Rl is
vhere

F,(r) = 23(t/0)

X

(%)
J(x) -j g(t)ae,

0
Thus the density function of R

l“

£,(r) = 2 g(r/o).

When n = 2 we have

r

(6)
r
: u _-ul, 8
Pe(r) - fz(u)du - ;-5 e / du,
0 0
2 2
Letting t « u“/20° we get
2,,2 2/2o2
[r /29
Fg(r) - l

r
2 2
et it w et ) .1-eF /20
)
0 0

Therefore the cumula-ive distridbution function of R_ is

(7)
2

2
Fo(r) =2 - g; £,(r).

(8)
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This can de rewritten as

rz(r) el -V2x g(r/o). (9)
Thus tbhe density function of R2 is

fa(r) - -{g g(l)(r/o). (10)

When n = 3 ve have

r r
2 2
P)(r) - jf5(u)du -] % %5- Y /202“.
0 0 )
Letting t = u/c ve get
r/o
2
'5(’) -\j'-:21 j t2 gt /2 at,
o
Integration by parts gives
r/fe r/o
2 2
rj(r) -{?{- tet /2 \ - [ et /2 d(-t)}
0 0
r/o
2., 2 2
2 -r /2 1 -t%/2
- ;{’%.l‘/(!’vgoj P /‘t}

r/o

. '\E:@ (})‘ }1-&_— /2 g, -\E:% or/2f

Therefore the cusulative distridution function of R5 is

2
Py(r) = 20(r/0) - <= g(r). (1)
This can be rewritten as.

-r2/24?
I5(r) = 23(r/0) +VX .f-(. %) _‘.L/_?__..

V&
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- 2 [3(e/0) - qy(r/0) a(x/o)]

vhere Qx(‘) is the Hermite polynamial of ordsr k defined by
X

(-1)¥ o (t) a(t) = s®)e) « Sy av)

80 that
g1 (e) = - g (¢) glt).

Therefore the cumulative distridution function of R5 is

r5(r) = 2 [3(r/0) + 6 e/0)] (12)

Thus the density functiom of R} is

fy(r) = 2 {s(rla) + 8(2)(7/0)} - (13)



IXY. EXPECTATION ARD STANDARD DEVIATION OF TNE RADIAL ERRCR

| . wmdocelt Bosed —dn8 oan
and ths stamdard Ssviatisa

random variabdble Rn. The first moment of Rn is

o2 © o
n-1 2,, 2 n 2,. 2
'(Rn) - fr fn(r) dr e jr e, .L.n_. Pty /26 ir = en] rn e T /2d ar.
0 0 g /

letting t » r/(a’a)l/2 v got

20

}t“ o'tz at /2 + 112 lftn + 1)/2]

E(R).@n/2+l‘/2 - =
. : [(nf2)?/e-1 2

n

0
-
. 21/2 | [Sn + l}[é 5
n/2 *
Therefore the expectation of ln is

Wy = @0 (1)
vhere

o2 Ll sayel
: [(n/2) (13)

In particular we have for n =1, 2, 3

u1-21/2~f=‘;% a-\fg ¢ & 0.7979 o
r_'\

ua-al/a—r[:%é-e-l o-«‘% o & 1.2533 ¢

ujuel/a—l_%%y 0-21}’—3’-'061.5958 [+ J8
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The second moment of lg is
- A 2, 2
2 [ 2 ) 2 -r°/2q
E(Rn)-jr tn(r)ox-/r o = e dr
0 0
QO
n+l 2. 2
e r — . r</2g dr
g
0
2 2
letting t = r°/20° we get
o0
E(RS) = 022n/2 c. jtn/Q et 4t w o 2n/2 an(n/z +1)
0
22n/2
-2 [(a/2 + 1) = -———Jk*~§ 5[y & « ad.
[(n/2)2?/2-1 [(n/2)2™* 2
Therefore the second moment is
E(Rg) . no°. (16)
The variance of of Rn is
2 2 2 2 2 2
v(nn) - E(Rn) - K (xn) « no° . (cno) « (o - e °) o
Therefore
E owv (17)
vhere
([l +1y/2 72
vn-n-2) [ ‘“{ (18)
( r(n/é‘) 7
In particular
r
2 1 2 2 2 . 2
al-{l-fe}L syl o -(l-;)o * 0.3634 ¢

L




2
2.ls. 0 r‘(52] 202_(2-5)02‘0.“,9202
2 Cay | 2

2y
2 .{5 -2 {_"ELI fa’*’ - (3-2) 2 2ol 2

> C(3/2)
Therefore the standard dsviation of Rn is
on - d.n o
vhere
1/2

4 s=sv -
n n

In partioular we bave for n = 1, 2, 3

21/2
Gl-(l--‘-) o = 0,6028 ¢

‘1/2
62.(2'-2') 0;006”10

g l/2
05-(5-;) g = 0.6T34 o,

P-1U473
8-29-%5
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(19)
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IV, MSDIAR OF THE RADIAL EHRCR

The median xQ, of the ranicwm variable Rh is defined implic!tly by the
squation
PR Sq) =2 (a)=1/2
We will solve this equation in the one, two, and three-dimensioval cases.
When n « 1 we have from (3) that
Pl(r) = 2J(r/0).
The wmedian % satisfies
1/2 = ¥y (a)) = 23(a, /o)
or
J(al/d) = 1l/k, (21)
Hence from tedbles of the standard Jeaussian distridution functioc we get
the approximation
@,/ = 0.6745.

Therefore the median of R, is

1l
a =a;o {22)
vhere
a8y e 0.6T45, (23)

When n @ 2 we have from (9) that
Po(r) =1 -V2x glr/o).

The median 02 satisfies

1/2 = E(a,) = 1 -Vax g(a,/o).

g(a,/0) = —Z— & 0.19947.
1%




Hence from tables of the standard Geaussian density functior we get tne
spproximation
a,/o = 1,774 .

Therafore the median of 32 ia

a, = 8,0 (2h)
vhere
a, 11774 (25)

We could have used (7) directly to get the exact expression

a, =V2 Tog, 2 e. (26)

Prom this we see that in terms of &y the cumulative distribution function
of R2 is
_ra/ 2
Fo(r) »P(Ry, $r) ml-2 & . (27)
It is interesting to note that no such exact expressions can be found vhen
n =1, 3 sinca termvwise integration of the infinite series involved yields
an infinite series wvhose root can not be given in closed fomm,

When n « 3 we have from (12) that

?B(r) -2 [J(r/o) + g(l)(r/o)] .
The median a3 satisfies
1/2 = Py(a,) = Z(J(GB/O) + s(l)(aj/c)}
or
I(a,/a) 4 ) /a) = 1/% 8
ay r 8 as/a) = . (28)

Hence from tadbles of the standard Gaussian density function we get the




approximation

Therefore the msdian of R

vhare

5

is

03/0 = 1.5382,

a,s-aia

8, = 1,5382,

(29)

(30)
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V. STARNDARD RADIAL ERRCR

ol o ol A  BA_ B . & AL
cm!eaisnt s use tha Tatic of @ 1o

Geussian standard daviation rather than the radial errer itself, let the

S, = Rn/a
denote the standard radial error. Tue cumulative Qistridbution fumctien

of the random variedls Sn is

H(s) = P(S € ¢) = P(R /o le) P(R, € o) = F (os)
Therefore, froa (4) we get

B (s) = 21(s°/2, n/2). s20 (%)
Thus, by using (5), (9), and (12) we f£ind that

BJL(') e 2J(s)

Hy(s) = 1 «/2x g(s)

HS(S) -2 [J(l) + g(l)(s)] .
Thess cumulative distribution fmetions are graphed in FPig, 1, The
Aensity function of the rsndom varisble 8n is

hn(') - !—g-.- rl fn(r) .‘% oal fn(o-) -0 tn(ot).
Therefore, from (2) we get

2‘
n-1 -s7/2 s2¢ (32)

hn(l) ec s
Thus, by using (6), (10), and (13) we £ind that

h,(s) « 2g(s)

hy(8) @ -/ 1) (s)

h}(ﬁ) - 2[;(.) + 3(2)(0)] .
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These density functions are graphed in Pig, 2.
Prow (14) the expectatiom of S 1s
E(8) = e (33)
From (17) and (19) the varfisnce and standard deviation of S are, respeatively,
v(8,) = v, (34)
and
D(s,) = . (35)
Prom (22), (24), and (27) the median of 8_ 1is
M(S.) =a . (36)

Teble 1 summarizes the pertinent statistieal constants and Table 2 gives

the conversion factors that inter-relsate these comstants.

Table 1

Statistical Constants

n °n vn % ‘n
1 0.79T9 0.363% 0.6028 0.67k%
2 1,2533 0.k292 0.6%51 1.177h

3 1.5958 0.4535 0,673k 1.5382
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Tabls 2

Conversion Factors

y = 0.T990 = l.m}ml
al ® 0.6TV3g = 0.8\5341

0 = l.h&éal = L.2335m,

hy ® 1,25330 = 1.06&312'

a, = 1,1TTho = 0.9}%2 - l.?kj&l
0= 00&9% - 0.m2
u} - 1.5”86 - l.O}?hCl}

ay = 1.53820 = 0.9659,;5 - 2.280501
o= 0.6501(13 - 0.6267;:5
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VI. STATISTICAL APPLICATION IN WAR GAMING

Por war gaming purposes, the detanation point of the weapon can be

determined by random sampling from Jjust three inputs:
(1) aiming point
(2) direction of approach
(3) means of dslivery.

These give, respectively:
(1') origin of the coordinate system
(2') orientation of the coordinate system
(3') medi{an radial error of the weapon.

Prom the aiming point the origin of an n-dimensional rectangular
coordinate system Yl’ ceey Yn is located, Prom the direction of approach
to the target the axes Yl’ ooy Yn are oriented so that one of them, say
Yl’ lies along the approach direction, PFrom the msans of delivery of the
waapon the median radial error is chosen., The median radial error is the
radius of the n-sphere vithin vhich the weapon has & 50°/0 provability of
detonating, Nov it is assumed that ths radial error has an n-dimensional
spherical Geaussian distribution centered at the aiming point as an origin
and scalsd by the standard devistiom o, But it was shown sarler that @,
is related to o by the equation

o, = 8,0 (37)
vhere s is » known constant and ¢ is the standard deviation of the one-
dimensional Geussian distridbutions that compose the n-dimensional spherical
Ceussian distribution, H.enco, xoving @ and & we solve (37) for 0. This
dstermines vhich Gaussian curve governs the distributin of the detonstiom

point along esdh of the axes Yl’ cevy Yn.
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From a table of standard (i{.e., sero expectation and unit varisnce)
Geussisn randam numbers we select n numbers Xys ceny Xpoo Nov if 0 = 1
these numbers would suffice, but in general we must use ¢ as a scaling
constant and determine the rectangular coordinstes Yyr eees Yp of the
detonation point from the equations

. Y =, {=l, ..., n (38)
Because of (22), (38) becaomes

yi --:fxi i = l, sesey I (59)

and we plot the desired detonation point (yl, ceey yn).

T™he folloving example illustrates the method vhen n = 2, Given an
aiming point, a direction of approsch from West to East, and a CEP of 1500
feet, we statistically determine the detonation point as follows:

Prom (37) we f£ind

% 1500 £t
— -

O™
L) .

-lm n:

N

8electing two numbers from the tadle of standard Gaussian random numbers
w get
X, = - 1.030
X, ® 0.537
Hense from (39) we have
yy ax, = - 1310 ¢
Yy = @, = 683 £t
which are plotted in Pig, 3.
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rig. 3 - Plot of radial error vhan n = 2
The method for three-dimensional weapons such as rockets or torpedoes

is analogous. When n = 5 we f£{nd from (37) that

2

is the proper relation, We select three numbers Xy, X5 X from the table

27 73
of standard Gaussian random numbers, They are converted to Yyr Yoo y5 by
means of (39). Pinally, the detonation point (yl, Yo y}) {s plotted in
the three-dimensional space with origin at the aiming point and with the
Yl axis along the approach diresctiom.

The foregoing statistieal method applies to non-gross weapon errors,
We might, for war gaming purposes, define & groes error by means of the
equations

Yy = Sox, 1el, ..., n (ko)

and regard it as a random event folloving some given probadility dietridution.
For example, if it is assumed that the probadility of a gross error is
0.1, .then & table of miform (i.e., equi-probadble) raniom digits is used
to sample statisticalliy as follows, If m weapens are to be used, then n
digits are selected imdspendently, and only if a digit is zero (say) is the

sorresponding attask ruled a groses error,
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